Malt: Practical Brewing Science

1. Introduction

2. Barley

- 2.1. Introduction
- 2.2. Origin and Classification
- 2.3. Botany
- 2.4. Cultivation and Growth
- 2.5. Variety Development
- 2.6. Selection and Grading

3. Biochemical Changes During Malting

- **3.1.** The Composition of Barley
- 3.2. Starch and Its Degradation
- **3.3. Proteins and Proteolysis**
- 3.4. Cell Walls and Their Degradation
- **3.5. Lipids and Their Degradation**
- **3.6.** Phenolic Compounds
- 3.7. Physical and Biochemical Changes in Barley Kernels During Processing
- 3.8. Production of Malt Volatiles/Maillard Reactions
- 3.9. Dimethyl Sulfide Precursor
- 3.10. N-Nitrosodimethylamine

4. Malting Operations

- 4.1. Overview
- 4.2. Steeping
- 4.3. Germination
- 4.4. Kilning
- 4.5. Specialty Malt Production

5. Principles of Malting Engineering

- **5.1. Introduction**
- 5.2. Basic Concepts of Malting Engineering
- 5.3. Fan Curve and Operating Principles
- **5.4.** Steeping Engineering
- **5.5. Germination Engineering**
- 5.6. Kiln Engineering

6. Interpretation of the Malt Certificate of Analysis

- **6.1. Introduction**
- 6.2. Physical Analyses
- 6.3. Chemical and Wort Analyses
- 6.4. Enzyme Analyses
- 6.5. Other Malt Analyses
- 6.6. Conclusion

7. Impact of Malt Quality on Brewing

- 7.1. Malt Milling and Control of Grist Fineness
- 7.2. Malt Enzymes and Their Effect on Brewing
- 7.3. Conclusion

8. Impact of Malt Quality on Fermentation

- 8.1. Predictability of Fermentation Performance by Congress Wort Analyses
- **8.2. Impact of Fermentable Sugar Potential on Fermentation Performance**
- 8.3. Impact of Assimilable Nitrogen Potential on Fermentation Performance

9. Impact of Malt on General Beer Quality

- 9.1. Introduction
- 9.2. Impact on Beer Color
- 9.3. Impact on Beer Foam and Stability
- 9.4. Impact on Colloidal Stability
- 9.5. Conclusion

10. Malt Contribution to the Flavor Profile of Beer

10.1. Introduction
10.2. Genotype by Environmental (G × E) Factors
10.3. Malting Process Factors
10.4. Conclusion

11. Malt Impact on Flavor Stability of Beer

11.1. Introduction

11.2. Lipoxygenase-Catalyzed Oxidation of Unsaturated Fatty Acids 11.3. Strecker Degradation and Oxidative Reactions of Amino Acids 11.4. Free Radical Reactions as Measured by Electron Paramagnetic Resonance 11.5. Conclusion

12. Requirement of Attributes from Specialty Malt by Beer Style

12.1. Introduction

- 12.2. Lagers and Their Malt Requirements
- 12.3. Ales and Their Malt Requirements
- 12.4. Strong Ales and Their Malt Requirements
- 12.5. Dark Beers and Their Malt Requirements
- 12.6. Wheat Beers and Their Malt Requirements
- 12.7. Other Beer Styles

13. Malt from Other Cereals

- **13.1. Introduction**
- **13.2. Hulless Barley Malt**
- 13.3. Wheat Malt
- 13.4. Rice Malt
- 13.5. Sorghum Malt
- 13.6. Rye Malt
- 13.7. Maize Malt
- 13.8. Millet Malt and Buckwheat Malt
- 13.9. Teff Malt and Quinoa Malt
- 13.10. Oat Malt

14. Microflora Associated with Barley and Malt and Their Impacts on Malt Quality

14.1. Introduction

- 14.2. Impact on Enzymes and on the Malting and Brewing Processes
- 14.3. Impact on Mycotoxin Levels
- 14.4. Impact on Beer Gushing Potential

14.5. Conclusion

15. Microflora Associated with Barley and Malt and Their Impacts on Premature Yeast Flocculation

15.1. Introduction

- 15.2. Detection of the PYF Potential of Malt
- **15.3.** Possible Causes and Mechanisms
- **15.4.** Monitoring and Prevention of PYF

16. Sprouted Grains for Food and Beverage Applications

- **16.1. Introduction**
- 16.2. Sprouted Wheat
- **16.3. Sprouted Rice (Pregerminated Rice)**
- 16.4. Sprouted Oats
- **16.5. Sprouted Pulse Seeds**
- 16.6. Conclusion

17. Principal Considerations for Handling and Storage of Malt

- **17.1. Introduction**
- 17.2. Management of Grain and Malt Moisture
- **17.3.** Control of Malt Breakage
- 17.4. Change of Enzyme Activities During Storage
- **17.5. Malt Transferring Equipment**
- **17.6.** Prevention of Grain Dust Explosions

18. Innovations for Better and Sustainable Barley and Malt

18.1. Introduction

- 18.2. UAV Technology for Raw Material Selection
- 18.3. Sustainable Malting and Steep Water Conservation
- 18.4. Minimization of Malting Loss
- 18.5. In Situ Monitoring of Malting Progress
- 18.6. Homogeneous Kilning of a Malt Batch
- **18.7.** Artificial Intelligence and Machine Learning
- 18.8. Breeding Through New Molecular Technologies
- 18.9. A Holistic Approach to Create Malt-Forward Beers

Appendixes

A Commonly Used Abbreviations and Acronyms

B Major Commercial Malting Companies: Production Capacity in Thousands of Metric Tons

C1 Selection of Base Malts Commercially Available in North America

C2 Partial List of Specialty Malts Commercially Available in North America

D Malt Color Conversion from ASBC to EBC

E Malt Diastatic Power (DP) Conversion from ASBC to EBC

F Temperature Conversion from °C to °F

G Commonly Used Conversions and Calculations

References

Index